MTD Proceedings

MTD ’18- Proceedings of the 5th ACM Workshop on Moving Target Defense

Full Citation in the ACM Digital Library

SESSION: Session 1: Evaluation of MTD Techniques

Session details: Session 1: Evaluation of MTD Techniques

  • Indrajit Ray

Quantifying the Effectiveness of Software Diversity using Near-Duplicate Detection Algorithms

  • Joel Coffman
  • Aurin Chakravarty
  • Joshua A. Russo
  • Andrew S. Gearhart

Software diversity is touted as a way to substantially increase the cost of cyber attacks by limiting an attacker’s ability to reuse exploits across diversified variants of an application. Despite the number of diversity techniques that have been described in the research literature, little is known about their effectiveness. In this paper, we consider near-duplicate detection algorithms as a way to measure the static aspects of software diversity—viz., their ability to recognize variants of an application. Due to the widely varying results reported by previous studies, we describe a novel technique for measuring the similarity of applications that share libraries. We use this technique to systematically compare various near-duplication detection algorithms and demonstrate their wide range in effectiveness, including for real-world tasks such as malware triage. In addition, we use these algorithms as a way to assess the relative strength of various diversity strategies, from recompilation with different compilers and optimization levels to techniques specifically designed to thwart exploit reuse. Our results indicate that even small changes to a binary disproportionately affect the similarity reported by near-duplicate detection algorithms. In addition, we observe a wide range in the effectiveness of various diversity strategies.

Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

  • Hooman Alavizadeh
  • Jin B. Hong
  • Julian Jang-Jaccard
  • Dong Seong Kim

Moving Target Defense (MTD) is a proactive security solution, which can be utilized by cloud computing in order to thwart cyber attacks. Many MTD techniques have been proposed, but there is still a lack of systematic evaluation methods for assessing the effectiveness of the proposed MTD techniques, especially when multiple MTD techniques are to be used in combinations. In this paper, we aim to address the aforementioned issue by proposing an approach for modeling and analysis of MTD techniques. We consider four security metrics: system risk, attack cost, return on attack, and availability to quantify the security of the cloud before and after deploying MTD techniques. Moreover, we propose a Diversity MTD technique to deploy OS diversification with various variants on multiple VMs and also combined Shuffle, Diversity, and Redundancy MTD techniques to improve the security of the cloud. We analyze the security metrics before and after deploying the proposed techniques to show the effectiveness of them. We also utilize importance measures based on network centrality measures into security analysis phase to improve the scalability of the MTD evaluation.

Analysis of Concurrent Moving Target Defenses

  • Warren Connell
  • Luan Huy Pham
  • Samuel Philip

While Moving Target Defenses (MTDs) have been increasingly recognized as a promising direction for cyber security, quantifying the effects of MTDs remains mostly an open problem. Each MTD has its own set of advantages and disadvantages. No single MTD provides an effective defense against the entire range of possible threats. One of the challenges facing MTD quantification efforts is predicting the cumulative effect of implementing multiple MTDs. We present a scenario where two MTDs are deployed in an experimental testbed created to model a realistic use case. This is followed by a probabilistic analysis of the effectiveness of both MTDs against a multi-step attack, along with the MTDs’ impact on availability to legitimate users. Our work is essential to providing decision makers with the knowledge to make informed choices regarding cyber defense.

SESSION: Session 2: Novel MTD Frameworks and Techniques

Session details: Session 2: Novel MTD Frameworks and Techniques

  • Warren Connell

Catch Me If You Can: Dynamic Concealment of Network Entities

  • Daniel Fraunholz
  • Daniel Krohmer
  • Simon Duque Anton
  • Hans Dieter Schotten

In this paper, a framework for Moving Target Defense is introduced. This framework bases on three pillars: network address mutation, communication stack randomization and the dynamic deployment of decoys. The network address mutation is based on the concept of domain generation algorithms, where different features are included to fulfill the system requirements. Those requirements are time dependency, unpredictability and determinism. Communication stack randomization is applied additionally to increase the complexity of reconnaissance activity. By employing communication stack randomization, previously fingerprinted systems do not only differ in the network address but also in their communication pattern behavior. And finally, decoys are integrated into the proposed framework to detect attackers that have breached the perimeter. Furthermore, attacker’s resources can be bound by interacting with the decoy systems. Additionally, the framework can be extended with more advanced Moving Target Defense methods such as obscuring port numbers of services.

Cloxy: A Context-aware Deception-as-a-Service Reverse Proxy for Web Services

  • Daniel Fraunholz
  • Daniel Reti
  • Simon Duque Anton
  • Hans Dieter Schotten

Legacy software, outdated applications and fast changing technologies pose a serious threat to information security. Several domains, such as long-life industrial control systems and Internet of Things devices, suffer from it. In many cases, system updates and new acquisitions are not an option. In this paper, a framework that combines a reverse proxy with various deception-based defense mechanisms is presented. It is designed to autonomously provide deception methods to web applications. Context-awareness and minimal configuration overhead make it perfectly suited to work as a service. The framework is built modularly to provide flexibility and adaptability to the application use case. It is evaluated with common web-based applications such as content management systems and several frequent attack vectors against them. Furthermore, the security and performance implications of the additional security layer are quantified and discussed. It is found that, given sound implementation, no further attack vectors are introduced to the web application. The performance of the prototypical framework increases the delay of communication with the underlying web application. This delay is within tolerable boundaries and can be further reduced by a more efficient implementation.

A Security SLA-Driven Moving Target Defense Framework to Secure Cloud Applications

  • Valentina Casola
  • Alessandra De Benedictis
  • Massimiliano Rak
  • Umberto Villano

The large adoption of cloud services in many business domains dramatically increases the need for effective solutions to improve the security of deployed services. The adoption of Security Service Level Agreements (Security SLAs) represents an effective solution to state formally the security guarantees that a cloud service is able to provide. Even if security policies declared by the service provider are properly implemented before the service is deployed and launched, the actual security level tends to degrade over time, due to the knowledge on the exposed attack surface that the attackers are progressively able to gain. In this paper, we present a Security SLA-driven MTD framework that allows MTD strategies to be applied to a cloud application by automatically switching among different admissible application configurations, in order to confuse the attackers and nullify their reconnaissance effort, while preserving the application Security SLA across reconfigurations.

SESSION: Keynote

Session details: Keynote

  • Massimiliano Albanese

Dynamic Defense against Adaptive and Persistent Adversaries

  • Radha Poovendran

This talk will cover two topics, namely, modeling and design of Moving Target Defense (MTD), and DIFT games for modeling Advanced Persistent Threats (APTs). We will first present a game-theoretic approach to characterizing the trade-off between resource efficiency and defense effectiveness in decoy- and randomization-based MTD. We will then address the game formulation for APTs. APTs are mounted by intelligent and resourceful adversaries who gain access to a targeted system and gather information over an extended period of time. APTs consist of multiple stages, including initial system compromise, privilege escalation, and data exfiltration, each of which involves strategic interaction between the APT and the targeted system. While this interaction can be viewed as a game, the stealthiness, adaptiveness, and unpredictability of APTs imply that the information structure of the game and the strategies of the APT are not readily available. Our approach to modeling APTs is based on the insight that the persistent nature of APTs creates information flows in the system that can be monitored. One monitoring mechanism is Dynamic Information Flow Tracking (DIFT), which taints and tracks malicious information flows through a system and inspects the flows at designated traps. Since tainting all flows in the system will incur significant memory and storage overhead, efficient tagging policies are needed to maximize the probability of detecting the APT while minimizing resource costs. In this work, we develop a multi-stage stochastic game framework for modeling the interaction between an APT and a DIFT, as well as designing an efficient DIFT-based defense. Our model is grounded on APT data gathered using the Refinable Attack Investigation (RAIN) flow-tracking framework. We present the current state of our formulation, insights that it provides on designing effective defenses against APTs, and directions for future work.

SESSION: Session 3: Protection of Critical Services against Advanced Threats

Session details: Session 3: Protection of Critical Services against Advanced Threats

  • Valentina Casola

A Secure Hash Commitment Approach for Moving Target Defense of Security-critical Services

  • Dieudonne Mulamba
  • Athith Amarnath
  • Bruhadeshwar Bezawada
  • Indrajit Ray

Protection of security-critical services, such as access-control reference monitors, is an important requirement in the modern era of distributed systems and services. The threat arises from hosting the service on a single server for a lengthy period of time, which allows the attacker to periodically enumerate the vulnerabilities of the service with respect to the server’s configuration and launch targeted attacks on the service. In our work, we design and implement an efficient solution based on the moving “target” defense strategy, to protect security-critical services against such active adversaries. Specifically, we focus on implementing our solution for protecting the reference monitor service that enforces access control for users requesting access to sensitive resources. The key intuition of our approach is to increase the level of difficulty faced by the attacker to compromise a service by periodically moving the security-critical service among a group of heterogeneous servers. For this approach to be practically feasible, the movement of the service should be efficient and random, i.e., the attacker should not have a-priori information about the choice of the next server hosting the service. Towards this, we describe an efficient Byzantine fault-tolerant leader election protocol that achieves the desired security and performance objectives. We built a prototype implementation that moves the access control service randomly among a group of fifty servers within a time range of 250-440 ms. We show that our approach tolerates Byzantine behavior of servers, which ensures that a server under adversarial control has no additional advantage of being selected as the next active server.

Ensuring Deception Consistency for FTP Services Hardened against Advanced Persistent Threats

  • Zhan Shu
  • Guanhua Yan

As evidenced by numerous high-profile security incidents such as the Target data breach and the Equifax hack, APTs (Advanced Persistent Threats) can significantly compromise the trustworthiness of cyber space. This work explores how to improve the effectiveness of cyber deception in hardening FTP (File Transfer Protocol) services against APTs. The main objective of our work is to ensure deception consistency: when the attackers are trapped, they can only make observations that are consistent with what they have seen already so that they cannot recognize the deceptive environment. To achieve deception consistency, we use logic constraints to characterize an attacker’s best knowledge (either positive, negative, or uncertain). When migrating the attacker’s FTP connection into a contained environment, we use these logic constraints to instantiate a new FTP file system that is guaranteed free of inconsistency. We performed deception experiments with student participants who just completed a computer security course. Following the design of Turing tests, we find that the participants’ chances of recognizing deceptive environments are close to random guesses. Our experiments also confirm the importance of observation consistency in identifying deception.

In-design Resilient SDN Control Plane and Elastic Forwarding Against Aggressive DDoS Attacks

  • Fida Gillani
  • Ehab Al-Shaer
  • Qi Duan

Using Software-defined Networks in wide area (SDN-WAN) has been strongly emerging in the past years. Due to scalability and economical reasons, SDN-WAN mostly uses an in-band control mechanism, which implies that control and data sharing the same critical physical links. However, the in-band control and centralized control architecture can be exploited by attackers to launch distributed denial of service (DDoS) on SDN control plane by flooding the shared links and/or the Open flow agents. Therefore, constructing a resilient software designed network requires dynamic isolation and distribution of the control flow to minimize damage and significantly increase attack cost. Existing solutions fall short to address this challenge because they require expensive extra dedicated resources or changes in OpenFlow protocol. In this paper, we propose a moving target technique called REsilient COntrol Network architecture (ReCON) that uses the same SDN network resources to defend SDN control plane dynamically against the DDoS attacks. ReCON essentially, (1) minimizes the sharing of critical resources among data and control traffic, and (2) elastically increases the limited capacity of the software control agents on-demand by dynamically using the under-utilized resources from within the same SDN network. To implement a practical solution, we formalize ReCON as a constraints satisfaction problem using Satisfiability Modulo Theory (SMT) to guarantee a correct-by-construction control plan placement that can handle dynamic network conditions.