
Privacy and Integrity Preserving
Range Queries in Sensor Networks

Fei Chen and Alex X. Liu
Dept. of Computer Science and Engineering

Michigan State University
East Lansing, Michigan 48824-1266, U.S.A.

{feichen, alexliu}@cse.msu.edu

1. INTRODUCTION
The architecture of two-tiered sensor networks (illustrated

in Fig. 1), where storage nodes serve as an intermediate tier
between sensors and a sink for storing data and process-
ing queries, has been widely adopted because of power and
storage saving for sensors as well as the efficiency of query
processing. However, a compromised storage node imposes
significant threats. First, it may allow attackers to obtain
sensitive data stored in the storage node. Second, it may
return forged data for a query. Third, it may not return
all data items that satisfy the query. Several privacy and
integrity preserving protocols [1, 2] have been proposed to
prevent attackers from gaining information from both sen-
sor collected data and sink issued queries, and allows the
sink to detect compromised storage nodes when they mis-
behave. However, the state-of-the-art protocol [1] has two
main drawbacks: (1) it allows attackers to obtain a reason-
able estimation on both sensor collected data and sink is-
sued queries; (2) the power consumption and storage space
for both sensors and storage nodes grow exponentially with
the number of dimensions of collected data.

Data

Data
Data

Data

Storage Node

Sensor

Sensor

Query

Result

Sensor

Sink

Sensor

Figure 1: Architecture of two-tired sensor networks

In this paper, we propose SafeQ, a novel privacy and in-
tegrity preserving protocol for two-tiered sensor networks.
To preserve privacy, SafeQ encodes both data and queries
such that a storage node can correctly process encoded
queries over encoded data without knowing their values. To
preserve integrity, we propose the neighborhood chaining
technique that allows a sink to verify whether the query re-
sult contains exactly the data items that satisfy the query.
We also propose an optimization technique using Bloom fil-
ters to significantly reduce communication cost between sen-
sors and storage nodes. Furthermore, we propose a solution
to adapt SafeQ for event-driven sensor networks, where a
sensor submits data when a certain event happens. Com-
paring with the state-of-the-art, SafeQ not only prevents
attackers from knowing both sensor collected data and sink
issued queries, but also delivers orders of magnitude better
performance on both power consumption and storage space
for multi-dimensional data.

2. MODELS AND PROBLEM STATEMENT

2.1 System Model
We assume that all sensor nodes and storage nodes are

loosely synchronized with the sink. With loosely synchro-
nization, we divide time into fixed duration intervals and
every sensor collects data once per time interval. From a
starting time that all sensors and the sink agree upon, every
n time intervals form a time slot. From the same starting
time, after a sensor collects data for n times, it sends a mes-
sage that contains a 3-tuple (i, t, {d1, · · · , dn}), where i is
the sensor ID and t is the sequence number of the time slot
in which the n data items {d1, · · · , dn} are collected by sen-
sor si. We address privacy and integrity preserving ranges
queries for event-driven sensor networks, where a sensor only
submits data to a storage node when a certain event hap-
pens, in Section 7. We further assume that the queries from
the sink are range queries. A range query “finding all the
data items, which are collected at time slot t and whose
value is in the range [a, b]” is denoted as {t, [a, b]}. Note
that the queries in most sensor network applications can be
easily modeled as range queries.

2.2 Threat Model
We assume that sensors and the sink are trusted but the

storage nodes are not. In a hostile environment, both sen-
sors and storage nodes can be compromised. If a sensor
is compromised, the subsequent collected data of the sen-
sor will be known to attackers and the compromised sensor
may send forged data to its closest storage node. It is ex-
tremely difficult to prevent such attacks without the use of
tamper proof hardware. However, the data from one sen-
sor constitute a small fraction of the collected data of the
whole sensor network. Therefore, we mainly focus on the
scenario where a storage node is compromised. Compromis-
ing a storage node can cause much greater damage to the
sensor network than compromising a sensor. After a stor-
age node is compromised, the large quantity of data stored
on the node will be known to attackers and upon receiving
a query from the sink, the compromised storage node may
return a falsified result formed by including forged data or
excluding legitimate data. Therefore, attackers are more
motivated to compromise storage nodes.

3. PRIVACY FOR 1-DIMENSIONAL DATA
To preserve privacy, each sensor si encrypts data items

d1,· · · ,dn using its secret key ki, denoted as (d1)ki
,· · · ,(dn)ki

.
Note that, ki is a shared secret key with the sink. However,
the key challenge is how a storage node processes encrypted
queries over encrypted data without knowing their values.
The idea of our solution is to convert sensor collected data
and sink issued queries to prefixes, and then use prefix mem-

bership verification to check whether a data item satisfies a
range query. To prevent a storage node from knowing the
values of data items and range queries, sensors and the sink
apply Hash Message Authentication Code (HMAC) to each
prefix converted from the data items and range queries. For
example, consider sensor collected data {1, 4, 5, 7, 9} and a
sink issued query [3,6] in Fig. 2. The sensor first converts the
collected data to ranges [min,1], [1,4], · · · , [9,max], where
min and max denote the lower and upper bound for all pos-
sible data items, respectively. Second, the sensor converts
each range [dj , dj+1] to prefixes, denoted as p([dj , dj+1]),
and then apply HMAC to each prefix in p([dj , dj+1]), de-
noted as hg(p([dj , dj+1])). Third, the sensor sends the result
to a storage node. When the sink performs query [3,6], it
first converts 3 and 6 to prefixes, denoted as p(3) and p(6),
respectively, and then apply HMAC to each prefix in p(3)
and p(6), denoted as hg(p(3)) and hg(p(6)), respectively.
Upon receiving query hg(p(3)) and hg(p(6)) from the sink,
the storage node checks which hg(p([dj , dj+1])) has com-
mon elements with hg(p(3)) or hg(p(6)). Based on prefix
membership verification, if hg(p(a)) ∩ hg(p([dj , dj+1])) 6= ∅,
a ∈ [dj , dj+1]. Therefore, hg(p(3)) ∩ hg(p([1, 4])) 6= ∅ and
hg(p(6)) ∩ hg(p([5, 7])) 6= ∅. Finally, the storage node finds
that the query result of [3,6] includes two data items 4 and
5, and then sends (4)ki

and (5)ki
to the sink.

Query: [3, 6]Data items: {1, 4, 5, 7, 9}

[min,1], [1,4], [4,5], [5,7], [7,9], [9,max]

Convert to ranges

Prefix&HMAC

Sensor (Key g) Sink (Key g)Storage node

…, hg(p([1,4])), hg(p([4,5])), hg(p([5,7])),… hg(p(3)) hg(p(6))

3 6
Prefix&HMAC

Figure 2: Privacy preserving scheme of SafeQ

4. INTEGRITY FOR 1-DIMENSIONAL

DATA
To allow the sink to verify the integrity of a query result,

the query response from a storage node to the sink con-
sists of two parts: (1) the query result QR, which includes
all the encrypted data items that satisfy the query; (2) the
verification object V O, which includes information for the
sink to verify the integrity of QR. We present neighborhood
chaining technique to preserve integrity of a query result.
The idea of this technique is that instead of encrypting each
data item individually, a sensor encrypts each item with its
left neighbor such that if a storage node excludes any data
item that satisfies the query, the sink can detect it. Fig. 3
shows the neighborhood chain for the sensor collected data
in Fig. 2. Here “|” denotes concatenation. For the range
query [3,6], the query result QR is {(1|4)ki

, (4|5)ki
} and the

verification object V O is {(5|7)ki
}. If a storage node ex-

cludes (4|5)ki
in QR, the sink can detect this error because

the items in QR and V O do not form a neighborhood chain.

Range [3, 6]

(min|1)ki (1|4)ki (4|5)ki (5|7)ki (7|9)ki (9|max)ki

Query result Verification object

Figure 3: An example neighborhood chain

5. PRIVACY AND INTEGRITY FOR

MULTI-DIMENSIONAL DATA
To preserve the privacy of multi-dimensional data, we

apply our 1-dimensional privacy preserving techniques

to each dimension of multi-dimensional data. For ex-
ample, sensor si collects 5 two-dimensional data items
(1,11), (3,5), (6,8), (7,1) and (9,4), it will apply the 1-
dimensional privacy preserving techniques to the first dimen-
sional values {1, 3, 6, 7, 9} and the second dimensional values
{1, 4, 5, 8, 11}. Given a range query ([2,6],[3,8]), the query
result QR1 for the sub-query [2,6] is the encrypted data
items of (3,5),(6,8) and the query result QR2 for the sub-
query [3,8] is the encrypted data items of (9,4),(3,5),(6,8).
Therefore the query result QR is the encrypted data items
of (3,5),(6,8).

Query

X dimension

Y
 d

im
e
n
s
io

n

(1,11)

(3,5)

(6,8)

(7,1)

(9,4)

(15,15)

(0,0)

Figure 4: A 2-
dimensional neigh-
borhood chain

To preserve the integrity
of multi-dimensional data,
we build a multi-dimensional
neighborhood chain. The
idea is that for the value of
each dimension in a data
item, we find its left neighbor
along each dimension and
embed this information when
we encrypt the item. Such
neighborhood information is
used by the sink for integrity
verification. Considering 5
example 2-dimensional data
items (1,11), (3,5), (6,8), (7,1), (9,4) with lower bound
(0, 0) and upper bound (15, 15), the corresponding multi-
dimensional neighborhood chain encrypted with key ki is
(0|1, 9|11)ki

, (1|3, 4|5)ki
, (3|6, 5|8)ki

, (6|7, 0|1)ki
, (7|9, 1|4)ki

and (9|15, 11|15)ki
. Figure 4 illustrates this chain, where

each black point denotes an item, the two grey points denote
the lower and upper bounds, the solid arrows illustrate
the chain along the X dimension, and the dashed arrows
illustrate the chain along the Y dimension.

6. SAFEQ OPTIMIZATION
To reduce the communication cost between sensors and

storage nodes, for n data items d1, · · · , dn, we use a
Bloom filter to represent hg(p([min, d1])), hg(p([d1, d2])),
· · · , hg(p([dn−1, dn])), hg(p([dn,max])). Thus, a sensor only
needs to send the Bloom filter instead of the hashes to a
storage node. The number of bits needed to represent the
Bloom filter is much smaller than that needed to repre-
sent the hashes. Taking hg(p([4, 5])) and hg(p([5, 7])) in
Fig. 2 as the example, we assume hg(p([4, 5]))={v1} and
hg(p([5, 7]))={v2, v3}. hg(p([4, 5])) and hg(p([5, 7])) can be
represented as the two arrays in Figure 5, where A is a bit
array representing the Bloom filter and B is an array of
pointers. Each pointer points to a list of indexes of ranges,
e.g., 2 is the index of [4,5] and 3 is the index of [5,7]. Note
that, “-” denotes a null pointer. Although using Bloom fil-
ters may introduce false positives in the query result, i.e.,
the data items that do not satisfy the query. We can control
the false positive rate by adjusting Bloom filter parameters.
For example, if each number in hg(p([dj , dj+1])) is 128-bit
and the number of data items n ≥ 3, to achieve reduction
on the communication cost and the false positive rate of
less than 1%, we can choose k (4≤k< 128

1.44+2⌈log
2
(n+1)⌉

) hash

functions for the Bloom filter.

7. RANGE QUERIES IN EVENT-DRIVEN

NETWORKS
So far we have assumed that at each time slot, a sen-

sor sends to a storage node the data that it collected at
that time slot. However, this assumption does not hold for
event-driven networks, where a sensor only reports data to

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

-- -- -- -- -- -- --

h1 h2

h3 h1 h2
h3

2 2 33 3 3

v1 v2

2

3

3

A

h1 h2
h3

v3

B

Figure 5: An example Bloom filter

a storage node when certain event happens. If we directly
apply our solution here, then the sink cannot verify whether
a sensor collected data at a time slot. We propose the idle
period technique to address this challenge. The idea is that
sensors report their idle period to the storage node when
they submit data after an idle period or when the idle pe-
riod is longer than a threshold. Storage nodes can use such
idle period to prove to the sink that a sensor did not submit
any data at any time slot in that idle period. Figure 6 il-
lustrates two idle periods [t1, t2]ki

and [t3, t4]ki
, where each

unit in the time axis is a time slot, a grey unit denotes that
si has data to submit, a blank unit denotes that si has no
data to submit, and γ is the threshold.

t1 t2 t3 t4
[t1, t2]ki

[t3, t4]ki

… …
Time axis

Figure 6: Example idle periods and data submissions

8. SECURITY&COMPLEXITY ANALYSIS

8.1 Privacy Analysis
In a SafeQ protected two-tiered sensor network, compro-

mising a storage node does not allow the attacker to obtain
the values of sensor collected data and sink issued queries.
The correctness of this claim is based on the fact that the
hash functions and encryption algorithms used in SafeQ are
secure. In the submission protocol, a storage node only re-
ceives encrypted data items and the secure hash values of
prefixes converted from the data items. Without knowing
the keys used in the encryption and secure hashing, it is
computationally infeasible to compute the actual values of
sensor collected data and the corresponding prefixes. In the
query protocol, a storage node only receives the secure hash
values of prefixes converted from a range query. Without
knowing the key used in the secure hashing, it is computa-
tionally infeasible to compute the actual values of sink issued
queries.

8.2 Integrity Analysis
In a SafeQ protected two-tiered sensor network, the sink

can detect whether the result of a query contains all the data
items that satisfy the query and whether it contains forged
data. The correctness of this claim is based on the following
three properties that QR and V O should satisfy for a query.
First, items in QR ∪ V O form a chain. Excluding any item
in the middle or changing any item violates the chaining
property. Second, the first item in QR ∪ V O contains the
value of its left neighbor, which should be out of the range
query on the smaller end. Third, the last item in QR ∪ V O
contains the value of its right neighbor, which should be out
of the range query on the larger end.

8.3 Complexity Analysis
Given n z-dimensional data items that a sensor collects in

a time slot, the computation cost, communication cost, and
storage space of SafeQ are described in the following table.

Note that the communication cost denotes the number of
bytes sent for each submission or query, and the storage
space denotes the number of bytes stored in a storage node
for each submission.

Computation Communication Space

Sensor O(zn) hash
O(zn) –

O(n) encryption
Storage

O(z) hash O(zn) O(zn)node
Sink O(z) hash O(z) –

Table 1: Complexity analysis of SafeQ

9. EXPERIMENTAL RESULTS
We implemented both SafeQ and the state-of-the-art (rep-

resented by S&L scheme) on a large real data set [3]. In com-
parison with S&L scheme, for 3-dimensional data, , our ex-
perimental results show that, SafeQ-Bloom consumes 184.9
times less power for sensors and 182.4 times less space for
storage nodes; SafeQ-Basic consumes 59.2 times less power
for sensors and 58.5 times less space for storage nodes. For
2-dimensional data, SafeQ-Bloom consumes 10.3 times less
power for sensors and 10.2 times less space for storage nodes;
SafeQ-Basic consumes 2.7 times less power for sensors and
2.7 times less space for storage nodes. Figures 7 and 8 shows
the average power and space consumption for 3-dimensional
and 2-dimensional data, respectively.

0 10 20 30 40 50 60 70 80 90
10

0

10
2

10
4

10
6

Time slot size (minutes)

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

m
W

)

SafeQ−Bloom
SafeQ−Basic
S&L

(a) Sensor: power consump-
tion

0 10 20 30 40 50 60 70 80 90
10

3

10
4

10
5

10
6

10
7

Time slot size (minutes)

S
p

a
c
e

 C
o

n
s
u

m
p

ti
o

n
 (

k
B

)

SafeQ−Bloom
SafeQ−Basic
S&L

(b) Storage node: space con-
sumption

Figure 7: Ave. power and space consumption for
3-dimensional data

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

Time slot size (minutes)

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

m
W

)

SafeQ−Bloom
SafeQ−Basic
S&L

(a) Sensor: power consump-
tion

0 10 20 30 40 50 60 70 80 90
10

3

10
4

10
5

Time slot size (minutes)

S
p

a
c
e

 C
o

n
s
u

m
p

ti
o

n
 (

k
B

)

SafeQ−Bloom
SafeQ−Basic
S&L

(b) Storage node: space con-
sumption

Figure 8: Ave. power and space consumption for
2-dimensional data

10. REFERENCES
[1] B. Sheng and Q. Li, “Verifiable privacy-preserving

range query in two-tiered sensor networks,” in Proc.
IEEE INFOCOM, 2008, pp. 46–50.

[2] J. Shi, R. Zhang, and Y. Zhang, “Secure range queries
in tiered sensor networks,” in Proc. IEEE INFOCOM,
2009.

[3] “Intel lab data,”
http://berkeley.intel-research.net/labdata.

