
1

Introduction to IPsec

Charlie Kaufman
charliek@microsoft.com

2

IP Security (IPsec)

• IETF standard for Network Layer security
• Popular for creating trusted link (VPN),

either firewall-firewall, or machine to
firewall

• Done “at layer 3” (we’ll explain that later)
• Pieces include data packets (AH, ESP),

authentication handshake (ISAKMP/IKE),
and endless other documents

3

Terminology Nit…

• Cryptographic protection of data usually has
two pieces:
– Encryption, for confidentiality
– Integrity protection, for authentication

• In this talk, I’ll just say encryption and
mean both!

4

Terminology Nit…

• Cryptographic protection of data usually has
two pieces:
– Encryption, for confidentiality
– Integrity protection, for authentication

• In this talk, I’ll just say encryption and
mean both!

• “We could do encryption without integrity
protection, but it would be wrong, that’s for
sure”….apologies to Richard Nixon

5

Distinction between IPsec and
SSL/TLS Interesting

• Both “real time” security
– Mutual authentication
– SA (security association) establishment
– encryption/integrity protection of conversation

• But important and subtle differences

6

IPsec vs. SSL/TLS

• IPsec philosophy: only change OS, don’t
change applications or API

• SSL/TLS philosophy: don’t change OS,
deployable as user process. TCP and below
in OS, so works on top of TCP

7

SSL vs IPsec

• Layer 3 (IPsec) theoretically better
– SSL: Rogue packet problem

• TCP by definition, not involved in crypto
• So attacker can generate TCP with (noncrypto) good

checksum
– TCP will accept it
– Real data will be discarded as duplicate

• Only recourse: break the connection

– In contrast, each IPsec pkt ind. protected
– Also, easier to build outboard crypto assist

8

However...

• If you don’t change the API or the
application:
– the only thing IPsec can pass up is the IP

address you’re talking to
– so IKE does all this PKI stuff to find out this is

mary.smith.examplecompany.com, but can’t
tell app

9

What you do get

• Encryption of the traffic
• Ability to do filtering, based on a policy

database
• Just as if there were a firewall between the

two ends

10

IPsec Scenario 1
Firewall to Firewall

• Corporate network connected through Internet

IPsec
endpoint

IPsec
endpoint

Untrusted
Network

Protected
Subnet

Protected
Subnet

Unmodified
Endnode

Unmodified
Endnode

11

IPsec Scenario 2
Endnode to Firewall

• Mobile node connects home through Internet

IPsec
endpoint

Internet

Protected
Subnet

Endnode
w/IPsec in
network stack

Unmodified
Endnode

12

In Scenario 2, allocating an
“internal” IP address

• Mobile node needs address in Protected Subnet
that will be routed to IPsec endpoint

IPsec
endpoint

Internet

Protected
Subnet

Endnode
w/IPsec in
network stack

Unmodified
Endnode

13

IPsec Scenario 3
End to End

• Two nodes don’t need to trust the network

Endnode
w/IPsec in
network stack

Endnode
w/IPsec in
network stack

internal or external network

14

What does IPsec Protect?

• Protection from eavesdropping on the
untrusted network

• In scenarios 1 & 2, connectivity only
– control ‘admission’ to a protected network

• In scenario 3, potential for user and server
authentication – mostly unrealized

15

Tunnel vs. Transport Mode

• In scenarios 1 & 2, IPsec payload is an IP
packet complete with different addresses

• In scenario 3, IP endpoints have same
addresses as IPsec endpoints, so second
header not needed.

IP hdr ESP hdr IP hdr TCP or UDP payload

IP hdr ESP hdr TCP or UDP payload

16

IKE vs. ESP vs. AH

• IPsec Security Association (SA) established
using IKE

• Payload packets are encapsulated with ESP
and/or AH

• IPsec Security Association could be
configured manually (at least in theory) or
using some other protocol

17

AH / ESP

• Extra header between layers 3 and 4 (IP and
TCP) to give dest enough info to identify
“security association”

• AH does integrity only - but also protects
parts of IP header

• ESP does encryption and (optional)
integrity protection (but only starting after
IP header) … encryption “optional” too
now

18

ESP
Encapsulating Security Payload

IP Header

ESP Header

Encrypted

Padding

MIC

Payload

Next Header = ‘50’ (ESP)

Session ID
Sequence #TCP = 6

UDP = 17
ESP = 50
IP = 4

Over ESP Header, Encrypted
Payload/Pad/Padlen/NXT

Encrypted

Pad Len NXT

19

AH (Authentication Header)
IP Header Next Header = ‘51’ (AH)

AH Header

Payload
Next Len MBZ

Session ID
Sequence #

MIC

TCP = 6
UDP = 17
ESP = 50
IP = 4
AH = 51

Over “immutable” fields of IP
Header, AH Header, and Payload

20

ESP / AH

• Payload may be TCP, UDP, or some other
‘higher layer’ protocol (transport mode)

• Payload may be IP datagram (tunnel mode)
• Payload may be ESP/AH again (recursive

encapsulation)
• If it’s important to protect IP header, ESP

with tunnel mode will do that

21

Why AH?

• AH and ESP designed by different groups.
AH designers were IPv6 supporters

• AH looks more like IPv6
• AH also protects “immutable” fields in IP

header.
• Originally, ESP just encryption
• Encryption without integrity has flaws

22

Why AH, con’t

• Then integrity protection added to ESP.
• Excuses for keeping AH

– protects IP header (nobody has a credible
security reason why, and ESP-tunnel can too.

– Makes NAT harder, which pleases IPv6 fans)
– with AH, firewalls and routers that want to look

at layer 4 info (like ports) know it’s not
encrypted. With ESP, can’t tell from packet

23

Why Not AH?

• IPsec already way too complex.
• AH implementation headache, makes IP complex

(marking everything “mutable” or not)
• IP header can’t be integrity protected en route

anyway (routers don’t know the key)
• You could peek inside ESP and almost always tell

if it’s encrypted or not. A flag might be nice
(reserved SPIs would work)

24

Internet Key Exchange (IKE)

• Resynchronize two ends of an IPsec SA
– Choose cryptographic keys
– Reset sequence numbers to zero
– Authenticate endpoints

• Design evolved into something very
complex

25

General idea of IKEv2

Alice Bob
gA mod p, nonceA

{“Alice”, proof I’m Alice}gAB mod p

gB mod p, nonceB

{“Bob”, proof I’m Bob}gAB mod p

26

Functionality WG wanted

• Perfect Forward Secrecy
• Identity hiding
• Lots of authentication styles
• Work with NATs
• DHCP-like address allocation
• crypto negotiation
• filtering rules (“selectors”) negotiation (“Traffic over this

SA must be between this set of IP addresses and layer 4
ports …)

• Two “phases” (next slide)

27

Phases

• Phase 1: expensive (when based on public
keys) mutual authentication, establish SA
between two machines

• Phase 2: leverage the phase 1 SA to create
lots of “child-SAs”

28

Why Two Phases

• We argued for removing this, but people
wanted it for:
– firewalls creating lots of VPNs for lots of

customers…they feel safer if different SAs
– different QOS, since might travel at different

speeds, sequence numbers get far apart
– makes rekeying faster
– different SAs with different security properties

29

Conceptual IKE

• Diffie-Hellman for PFS
• Signed D-H to avoid man-in-middle attack
• Cookies for DoS protection

30

DoS Protection Using Cookies

• Avoid using memory or computation
resources when pkts from forged IP addr’s

Alice Bob
gA mod p, nonceA

first send me cookie = h(IP, secret)

cookie, gA mod p, nonceA

31

An Intuition for Diffie-Hellman

• Allows two individuals to agree on a secret
key, even though they can only
communicate in public

• Alice chooses a private number and from
that calculates a public number

• Bob does the same
• Each can use the other’s public number and

their own private number to compute the
same secret

• An eavesdropper can’t reproduce it

32

Why is D-H Secure?

• We assume the following is hard:
• Given g, p, and gX mod p, what is X?
• With the best known mathematical techniques, this

is somewhat harder than factoring a composite of
the same magnitude as p

• Subtlety: they haven’t proven that the algorithms
are as hard to break as the underlying problem

33

Diffie-Hellman
Alice Bob

choose random A choose random B

gA mod p

gB mod p

agree on g,p

compute (gB mod p) A compute (gA mod p)B

agree on gAB mod p

34

Man in the Middle

Alice Bob

gA mod p

Trudy

agree on gAT mod p

gT mod p

gT mod p

gB mod p

agree on gTB mod p

{data}gAT mod p

{data}gAT mod p

{data}gTB mod p

{data}gTB mod p

35

Signed Diffie-Hellman
(Avoiding Man in the Middle)

Alice Bob

choose random A choose random B

[gA mod p] signed with Alice’s Private Key

[gB mod p] signed with Bob’s Private Key

verify Alice’s signature

agree on gAB mod p

verify Bob’s signature

36

But…if you have RSA keys...

• Why bother with Diffie-Hellman?
• Answer: PFS

– If someone records the entire conversation, and
later discovers Alice’s and Bob’s private keys,
you don’t want them to be able to decrypt

– example without PFS (SSL): Alice chooses
secret, encrypts it with Bob’s PK, rest of
session protected based on that secret

37

What are the nonces for?

• It’s expensive to compute gA mod p
• So, nice to reuse A (or for Bob to reuse B)
• Using nonces allows you to do that, and still

get a new session key for each session
• Though if you remember A beyond a

session, you lose PFS

38

Now details. First IKEv1

• Two phases
• Phase 1 has 8 protocols!

– two “modes”
• aggressive: 3 msgs. mutual auth and get session key
• main: 6 msgs. that, plus ID hiding

– For each mode, a protocol for each key type
• preshared secret key, signature PK, encryption PK

(old crufty way), encryption PK (improved way)

• So, 9 protocols (4*2 phase 1, plus phase 2)

39

General Idea of IKEv1 Main-
Mode

Alice Bob

gA mod p, nonceA

{“Alice”, proof I’m Alice} key variant-dependent

gB mod p, nonceB

crypto suites I support

crypto suites I choose

{“Bob”, proof I’m Bob}

40

General Idea of IKEv1
Aggressive-Mode

Alice Bob
I’m Alice, gA mod p, nonceA

proof I’m Alice

I’m Bob, gB mod p, proof I’m Bob, nonceB

41

Which of 8 is “MUST”?

• Main mode, preshared key = SAlice-Bob

• Alice sends: {“Alice”, proof} f(SAlice-Bob)
• Bob can’t decrypt that unless he knows who he’s

talking to!
• So the WG said “your ID has to be your IP addr”
• But then why do 6-msg main mode to hide it?
• And it doesn’t work for “road warrior”
• So most IKEv1s are aggressive mode, preshared

42

General idea of IKEv1 “quick
mode” (phase 2)

IKE-SA, Y, traffic, SPIA, [gA mod p]

IKE-SA, Y, ack

IKE-SA, Y, traffic, SPIB, [gB mod p]

43

IKEv2

• Greatly cleaned up and simplified
• Tried not to make gratuitous changes, so

code reuse when possible
• Initial version much simpler, then added

– NAT traversal, legacy authentication, internal
address assignment

– Copied those from how it was done in IKEv1

44

General idea of IKEv2

Alice Bob
gA mod p, nonceA

{“Alice”, proof I’m Alice}gAB mod p, make child-SA

gB mod p, nonceB

{“Bob”, proof I’m Bob}gAB mod p, make child-SA

45

Traffic Restrictions

• IPsec policy: Traffic between these sets of
IP adds, and protocol types, and ports, must
have this sort of cryptographic protection

• Creating SA, specify “traffic selectors”
• IKEv1: Initiator proposes. Responder (if has

more restrictive policy) can just say “no”
• IKEv2: allowed responder to narrow or say

“single pair”

46

Working Through Firewalls and NATs

• Firewalls might not pass ESP packets
• Endnodes may share IP addresses

(distinguishing them using ports)
• UDP encapsulation used to get through

(make ports visible to NAPT)
IP hdr UDP hdr ESP hdr IP hdr TCP or UDP payload

47

Varying Authentication Methods

• X.509 certificates
– Naming trusted certifiers

• User name and password
• SecurID or challenge/response cards
• Smart cards
• Kerberos

48

The Dream of IPsec End to End

• IPsec envisioned to replace SSL and be
standard way to cryptographically protect
all communications

• Protocol itself supports this
• Deployments don’t

49

What would it take?

• Policy encoding: how does a node know
whether to require (or attempt) IPsec

• Certificate policies: what should be the
requirements for certificates authenticating
service X (or might keys be in DNS)?

• APIs – How does an application ask the OS
the authenticated name of the other end of a
connection?

50

What are the prospects?

• Not good… SSL and SSH “good enough”
• Hard policy and naming issues without an

organizing force

51

Conclusions

• Until a few years ago, you could connect to the Internet and
be in contact with hundreds of millions of other nodes,
without giving even a thought to security. The Internet in the
’90’s was like sex in the ’60’s. It was great while it lasted,
but it was inherently unhealthy and was destined to end
badly. I’m just really glad I didn’t miss out again this time.

— from “Network Security: Private Communication in a
Public World”

